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Abstract

This paper presents hybrid genetic algorithms to optimize the structure of the main parts of hydroelectric sets based on the ®nite element

method. Firstly, the optimal model of the main parts of hydroelectric sets is established including an objective function and some constraint

conditions. Afterwards, the stochastic direction method (SDM) and a genetic algorithm (GA) method are applied to solve the optimal

model. Comparing the computational results of the two methods, some features of the methods are pointed out. In order to overcome the

disadvantages of the above two methods, a new method, a hybrid genetic algorithm (HGA), is presented, and is used to optimize the

structure of the main parts of hydroelectric sets. The computational results show the new method can obtain a global solution with a high

search speed compared to the other two methods. # 2000 Published by Elsevier Science S.A.
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1. Introduction

The structure of hydroelectric set is commonly designed

based on the conventional structure computing method,

utilizing the experience of designer, handbooks and stan-

dards provided. Taking its high safety requirement into

account, a large size is selected for the design of the practical

structure, which will increase the structure's weight, and

waste materials. Moreover, this need not necessarily

improve the structure performance of a hydroelectric set.

In recent years, some optimization methods have been

proposed for the design of the structure of a hydroelectric

set. The common optimization methods mainly rely on the

gradient value to search for the optimization solution during

computing. For some practical design problems, the optimal

function is discontinuous or multi-modal, so the derivative

of the function cannot be obtained. These general optimiza-

tion methods often fail when confronted with the above

problems. The stochastic direction method (SDM) has been

proposed to overcome the above disadvantages, but SDM

easily converges to local solution. The genetic algorithm

(GA), which is called a heuristic optimization method, has

been presented to overcome the local convergence of the

SDM. The GA can outperform conventional optimization

techniques on discontinuous, multi-modal and noisy func-

tions [1], but needs a large amount of computation time.

In this paper, a hybrid genetic algorithm (HGA) is pre-

sented by combining the SDM and the GA method for

overcoming their disadvantages, and is used to design the

upper-frame of the main part of a hydroelectric set.

2. Mathematical model

The structure of the upper-frame is shown in Fig. 1, which

includes a center frame and four arms. The upper-frame is an

important supporting part of the hydroelectric set which

®xes the thrust bearings, the guide bearings, the exciter

turbine and brake, etc., and supports the total weight of

the rotational components, the deadweight and the axial

water-thrust, etc.

2.1. Original ®nite element model

The upper-frame is simply considered as 12 steel plates of

different thickness. Fig. 2 shows the grid of the ®nite

element model of the upper-frame. There are 12 element

units, 1256 elements, 624 nodes and 3744 degrees of free-

dom. The four baseboards of the arms are considered as

®xed restraint, i.e., its six degrees of freedom are restrained.
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Otherwise, the overall loads of about 668 000 N fall onto an

anti-friction plate (see Fig. 1).

The static and dynamic analyses of the upper-frame are

carried out by means of the ®nite element software

DASAP90, and the maximum strain dmax � 0:3151 mm

and the maximum stress smax � 31:55 MPa are obtained.

The static deformation of the upper-frame structure is shown

in Fig. 3. The ®rst 10 orders of the natural frequency of the

upper-frame for different values of k are computed to be as

follows:

k � 1; frequency �121:736 Hz

k � 2; frequency �127:289 Hz

k � 3; frequency �130:073 Hz

k � 4; frequency �130:429 Hz

k � 5; frequency �132:658 Hz

k � 6; frequency �139:669 Hz

k � 7; frequency �139:676 Hz

k � 8; frequency �139:676 Hz

k � 9; frequency �139:677 Hz

k � 10; frequency �198:124 Hz

and its modes are shown in Fig. 4 (enumerating only four

typical modes due to limited space).

The allowable stress s of the framework is about 110±

140 MPa, and the allowable strain d of the framework is

about 0.5±1.5 mm. From the above analytical results, it is

found that the upper-frame has abundant strength. Thus, the

Fig. 1. The basis con®guration of the upper-frame.

Fig. 2. The grid chart of the upper-frame. Fig. 3. The static deformation chart of the original scheme.
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upper-frame can be designed as a lightweight structure

which satis®es the strength and stiffness conditions. The

upper-frame structure will be designed using an optimal

algorithm in conjunction with the ®nite element method.

2.2. Mathematical model

2.2.1. Objective function

The weight of the upper-frame and the thickness of

each plate are taken as the objective function and the

design variable, respectively. Thus, there are 12 variables,

namely, X � �x1; x2; . . . ; x12�T. The objective function is

as follows:

f �X� � 7850�1:576024x1 � 2:6939137x2

� 3:9563333x3 � 3:243042x4 � 2:5756x5

� 0:6212x6 � 1:592x7 � 1:761604x8

� 0:5881061x9 � 1:3103583x10 � 0:79853x11

� 1:51372x12� (1)

2.2.2. Constraints

For static optimization, the constraints are the strength

and stiffness conditions, i.e., both the maximum stress and

the maximum strain are less than the allowable values.

Therefore, the optimal mathematical model can be

expressed as

min f �X�
s:t: g1�X� � smax

�s� ÿ 1 � 0

g2�X� � dmax

�d� ÿ 1 � 0

3. Static optimization

From the above mathematical model, the constraints are

implicit, non-linear, and non-differentiable. SDM and GA

have no special demand on the properties of the function,

being applied to solve this complex structural engineering

problem, the objective being to obtain the maximum

strength/weight ratio.

3.1. Stochastic direction method

SDM is a direct method for solving the constraint optimal

problem. Its basic principle is shown in Fig. 5, and its main

procedure is given as follows.

Fig. 4. The modes of the original scheme.
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1. Generate an initial point X(0) within the domain.

2. Generate k n-dimensional random unit vector e�j�

according to

e�j� � 1����������������������Pn
i�1�r�j�i �2

q
r
�j�
1

r
�j�
2

..

.

r
�j�
n

266664
377775 �j � 1; 2; � � � ; k�

where r
�j�
i is a pseudo-random number within �ÿ1; 1�.

3. Select a suitable step size a0, and compute k random

points X�j� according to

X�j� � X�0� � a0e�j� �j � 1; 2; . . . ; k�
Obviously, k random points X�j� are distributed on the

hypersphere of which the center is X�0� and the radius is

a0; k just represents the k random searching direction.

4. Compute the objective function values of k random

points X�j�, then the minimum value f �X�L�� and the

point X�L� are selected from among them, namely,

f �X�L�� � minff �X�j��g �j � 1; 2; . . . ; k�
5. If X�L� is feasible and F�X�L�� < F�X�0��, the feasible

search direction S is determined by

S � X�L� ÿ X�0�

Moreover, the step 1:3a0 is increased along this direction

S, then a new point X�1� is obtained as follows:

X�1� � X�0� � a�X�L� ÿ X�0��
where a � 1:3a0.

6. If X�1� is satis®ed with f �X�1�� < f �X�0��, continue to

increase step 1:3a forward along direction S, or else

short step size 0:7a0 to search for a new point, until the

new point is feasible and its objective function value is

less than f �X�0��. Afterwards, take the new point for the

initial point of the next search. Repeat (2)±(5).

7. Terminate the iterative operation if a solution is found

(converged).

3.2. Optimal results of SDM

Because the search direction of SDM is preferably chosen

from many directions and the step size can be modi®ed

randomly, its speed of convergence is relatively high. To

avoid a local solution, the calculation can be made several

times with several different initial points. After accurately

analyzing these computing results, the best results of all are

as follows:

Optim:X�1� � 0:01552613 m

Optim:X�2� � 0:00512837 m

Optim:X�3� � 0:00971257 m

Optim:X�4� � 0:01460076 m

Optim:X�5� � 0:00165203 m

Optim:X�6� � 0:00203380 m

Optim:X�7� � 0:00574408 m

Optim:X�8� � 0:01617512 m

Optim:X�9� � 0:05135416 m

Optim:X�10� � 0:01723076 m

Optim:X�11� � 0:01393475 m

Optim:X�12� � 0:01365249 m

Optim: FX � 1976:57172450 kg

Optim: Str � 6:56817E� 07 Pa

Optim:Disp � 0:00049753 m

where X[i] (i�1±12) is the thickness of the corresponding

plate, FX the total weight of the upper-frame, Str the

maximum stress, and Disp the maximum strain.

The above computing program is written in language

TURBO PASCAL 6.0, and is run on computer COMPAQ

586 CPU166, the total run-time being about 65 min.

3.3. Genetic algorithm

The GA is an adaptive method which searches the solu-

tion space of a function through the use of simulated

evolution, i.e., the principle of natural selection and the

survival-of-the-®ttest strategy. GA differs from traditional

search techniques. GA manipulates a population of indivi-

duals, each representing a possible solution to a given

problem [2]. Each individual uses probabilistic genetic-like

operators such as selection, crossover and mutation to

produce a new population which contains a higher propor-

tion of the more ®t individuals. In this way, the GA moves

away from unpromising areas of the search space and

towards promising areas [3].

The use of GA requires the determination of four

fundamental features: a suitable coding (or representation),

a ®tness function, genetic operators, and initialization

Fig. 5. The basic principle of SDM.
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and convergence [4]. These aspects are described in the

following.

3.3.1. Coding

A possible solution to the above problem may be repre-

sented as a set of parameters, which is the thickness of the

upper-frame in the structure design. These parameters

(known as genes) are joined together to form a string which

is often referred to as a chromosome. The problem is to mini-

mize a function including 12 variables, f �x1; x2; . . . ; x12�,
where each variable might be denoted by a 6-bit binary

number. The chromosome would, therefore, contain 12

genes, and consist of 72 binary digits.

It is assumed that thickness of each plate is between 0.001

and 0.064 m and each has 64 possible values (0.001 and

0.064 are the variable upper and lower bounds). A 6-bit

string 000000 represents 0.001 m thickness, and a 6-bit

string 111111 represents 0.064 m thickness: for the other

62 six-bit strings code the rest of the values 0.002±0.063. For

example, a certain chromosome string of this upper-frame is

shown as follows:

In this 72-bit string, the ®rst 6-bit codes denote the ®rst

thickness x1 of the plates, whilst the rest may be deduced by

analogy, the last 6-bit codes denoting the 12th plate's

thickness x12. For example, the ®rst thickness of the plate

codes is 010100, which corresponds to 0.021 m, the second

plate's thickness codes is 000111, which corresponds to

0.008 m thickness, and the rest of the 10 thickness of plate

may be represented with binary digits analogously.

3.3.2. Fitness function

A ®tness function must be devised for each problem to be

solved. In this upper-frame design problem, the objective

function is directly transferred into a ®tness function. The

upper-frame design is a constrained minimization problem,

but it can be transformed into an unconstrained maximiza-

tion problem by using a penalty function, its expression

being as follows:

max F�X�
where F�X� is the ®tness function, which is computed by

F�X� � 1

1� �1:1�f �X�
P�X�

where f �X� is the objective function, and P�X� a penalty

function, de®ned as

P�X� � 1

�1:1�F�X�
; F�X� �

X2

u�1

jgu�X�j

where gu�X� is a constrained function.

3.3.3. Genetic operators

Genetic operators provide the basic search mechanism of

the GA. The operators can create new generations, which are

the more ®t individuals. These include three basic operators:

selection, crossover and mutation.

Selection adopts an expected value method, herein being

shown as follows.

1. Compute the expected value:

ei � nFiPn
i�1Fi

where Fi equals the ®tness of individual i, and n equals

the population size.

2. The integer part of ei is assigned as the selected times of

individual i, the individuals being sorted according to

the decimal part of ei, and selected from large to small,

until the population size is n.

Crossover is an important operator in GA, which can

improve the search power of GA by leaps and bounds.

Herein the uniform crossover is selected because the uni-

form crossover is more robust and bene®cial if the popula-

tion size is small.

Mutation is applied to a chromosome individually after

crossover. In this paper, a new parameter AN is used which is

the allowable number of the same individual in a population.

If the number SN of the same individual in a population is

greater than or equal to AN, the mutation is taken as a useful

operation.

3.3.4. Initialization and convergence

GA generates an initial population randomly, then it

moves from one generation to the other generation selected

and reproduced by parents, until its convergence criterion is

met. A speci®ed maximum number M of generations is used

to stop the above processes. Since it must load the ®nite

element module programs when computing ®tness, and their

computing time is considered, the population size n is equal

to 30, and the maximum generations number M is equal to

30.

The GA creates an initial generation, G�0�, and from each

generation G�i�, the GA generates a new one, G�i� 1�. The

main processes of the GA are given as follows.

BEGIN /� genetic algorithm �/
Initialize parameters (n�30, M�30, AN�10);

Generate initial generation G�0�;
Compute fitness of each individual;

For i�1 to M do

Begin

Selection operation from generation G�iÿ 1�;

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

010100 000111 001011 100101 000101 000001 100000 110011 111100 010101 101010 001100
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Compute SN; /� the number of same individual in

population �/
If SN � AN then Mutation operation;

Crossover operation;

Produce next generation G�i�;
End;

Print out best solution found;

END.

3.4. Optimal results of GA

Applying GA to optimize upper-frame, the optimal results

are as follows:

Optim:X�1� � 0:013 m

Optim:X�2� � 0:001 m

Optim:X�3� � 0:003 m

Optim:X�4� � 0:020 m

Optim:X�5� � 0:003 m

Optim:X�6� � 0:002 m

Optim:X�7� � 0:003 m

Optim:X�8� � 0:005 m

Optim:X�9� � 0:056 m

Optim:X�10� � 0:020 m

Optim:X�11� � 0:010 m

Optim:X�12� � 0:020 m

Optim: FX � 1725:94878300 kg

Optim: Str � 1:123094E � 08 Pa

Optim:Disp � 0:00049967 m

where X[i] (i�1±12) is the thickness of the corresponding

plate, FX the total weight of upper-frame, Str the maximum

stress, and Disp the maximum strain.

The GA program is written in language TURBO PASCAL

6.0 and run on computer COMPAQ 586 CPU166MHZ,

where the total run-time is 4650 min.

3.5. Comparison of the results of SDM and GA

Comparing the run conditions and computing results,

SDM can be referred to as a version of hill-climbing. It

starts from a random point in the search space, and if it can

obtain a higher point in the computing processing, it is

accepted. Clearly, SDM starts at different starting points,

and obtains different optimum solutions. In addition, the

SDM possibly locates on the boundary of the search space,

but during computing it infrequently load ®nite element

modules, so it takes less time.

GA, by comparison, can provide a more accurate solution

but take more run-time. GA starts from many points, a

population of individuals, to search for the solution. GA

evaluates and operates on several solutions simultaneously,

and it can gather information from many current points to

directly search. This factor makes GA less susceptible to the

problems of local maximum and noise. However, its run-

time is proportional to the population size n and the max-

imum generations number M. For a complicated structure,

one static analysis requires about 5 min, as many nodes and

elements are divided, so the run-time of GA is very long.

4. Dynamic optimization

In recent years, structure design has translated from the

traditional static design to dynamic optimal design, the

designed structure not only meeting static demands but also

possessing a preferable dynamic property. Herein is devel-

oped a dynamic optimal design based on the total minimum

weight of the upper-frame, where the designed result can

satisfy both static constraints (such as stress and strain) and

dynamic constraints (such as avoiding resonance).

The mathematical model, variables, objective function

and static constraints are the same as in the above static

optimization, but a dynamic constraint is added, i.e., all

orders of natural frequency should keep away from the

driving base frequency (50 Hz) and its frequency multi-

plication. It is embodied that the base frequency of the

upper-frame should not be less than 50�1.4�70 Hz, so that

each order natural frequency $ should satisfy the equation

50r � 10 � $ � 50sÿ 10

�r � 1; 2; 3; . . . ; s � 2; 3; 4; . . .�
Therefore, the mathematical model with static and dynamic

constraints is given as follows:

min f �X�
s:t: g1�X� � smax

�s� ÿ 1 � 0

g2�X� � dmax

�d� ÿ 1 � 0

g3�X� � 1ÿ$min

70
� 0

50r � 10 � $ � 50sÿ10 �r�1; 2; 3; . . . ; s�2; 3; 4; . . .�
The objective function f �X� can be transformed into a ®tness

function according to Section 3.3. During the practical

computing, only the ®rst ®ve orders natural frequency is

calculated and made outside the range [0±70 Hz], [90±

110 Hz] and [140±160 Hz]. Obviously, this dynamic opti-

mization problem is a multi-modal function. For this kind of

problem, SDM easily immerses in an improper search area,

and it is very dif®cult to reach global optimum, but one

major drawback of GA is low ef®ciency, and the time of

dynamic analysis is twice as much as that of static analysis.

Combining the advantages and disadvantages of the above

two techniques, the authors present a new HGA which

preserves the precision of results, while reducing run-time.
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To design a new hybrid method, GA is integrated with

SDM effectively, combining the merits of the two original

algorithms. The initial populations of HGA can be obtained

by SDM. Namely, ®rst n feasible starting points are randomly

chosen, from which n optimum results are obtained via SDM,

then these n results are taken as initial population of GA.

Applying the new HGA to dynamically optimize the

upper-frame, the optimal results follow:

Optim:X�1� � 0:019 m

Optim:X�2� � 0:009 m

Optim:X�3� � 0:008 m

Optim:X�4� � 0:021 m

Optim:X�5� � 0:007 m

Optim:X�6� � 0:010 m

Optim:X�7� � 0:010 m

Optim:X�8� � 0:020 m

Optim:X�9� � 0:057 m

Optim:X�10� � 0:019 m

Optim:X�11� � 0:012 m

Optim:X�12� � 0:020 m

Optim: FX � 2564:56168620 kg

Optim: Str � 5:905293E � 07 Pa

Optim:Disp � 0:00037959 m

Optim: Fre1 � 85:81517104 Hz

Optim: Fre2 � 87:04540734 Hz

Optim: Fre3 � 87:04755860 Hz

Optim: Fre4 � 88:19955590 Hz

Optim: Fre5 � 110:12744290 Hz

where X[i] (i�1±12) is the thickness of the corresponding

plate, FX the total weight of the upper-frame, Str the

maximum stress, Disp the maximum strain, and Fre1±

Fre5 represent the ®rst ®ve orders natural frequency. The

HGA program is written in language TURBO PASCAL 6.0

and run on computer COMPAQ 586 CPU166MHZ, and the

total run-time is 4770 min.

5. Comparison: original scheme and optimal scheme

To meet the international standard speci®ed for the plate,

the ®nal optimal scheme is obtained as follows:

X�1� � 0:020 m; X�2� � 0:009 m

X�3� � 0:008 m; X�4� � 0:020 m

X�5� � 0:007 m; X�6� � 0:010 m

X�7� � 0:010 m; X�8� � 0:020 m

X�9� � 0:055 m; X�10� � 0:018 m

X�11� � 0:012 m; X�12� � 0:020 m

The static and dynamic analysis of the optimal scheme is

also carried outby meansof®nite element softwareDASAP90

so as to enable comparison with the original scheme. The

static deformation structure of the optimal upper-frame is

showninFig.6,anditsmodesare showninFig.7 (enumerating

only four typical modes). The comparison of results of the

different schemes is shown in Table 1.

The maximum stress and maximum strain of the optimal

upper-frame scheme are both greater than those of original

scheme, but its strength and stiffness can meet the require-

ments and it has a substantial weight reduction. After

dynamic optimization, the vibration performance also

attains the design goal. The relatively optimal scheme

possesses good structure performance, which indicates that

the optimal structure design given in this paper is successful.

Although there is some difference between the run-time of

GAs and HGAs, the ef®ciency of the HGA is much greater

than that of GA, since dynamic ®nite element analysis often

spends double the time of static analysis. From Table 1, it

can be established that for the same population size, the

general GA needs to iterate 30 generations to converge,

while the HGA needs only 16 generations.

6. Conclusions

This paper successfully presents a new optimal algorithm

in conjunction with a ®nite element module to design a

lightweight upper-frame. The ®nal optimal scheme gains a

weight reduction of 28.64%, which provides a reliable

scienti®c basis for improving the carrying capacity of a

product and new product development.

Fig. 6. The static deformation chart of the ®nal optimal scheme.
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Fig. 7. The modes of the static deformation structure of the optimal upper-frame.

Table 1

Factors Original scheme Optimal scheme

Static

optimization

of SDM

Static

optimization

of GA

Dynamic

optimization

of HGA

Final

revision

scheme

Run-time (min) 65 4650 4770

Population size, n 30 30

Maximum generations number, M 30 16

Maximum strain (mm) 0.3151 0.4975 0.4997 0.3796 0.38645

Maximum stress (MPa) 31.55 65.68 112.31 59.05 42.75

First-order natural frequency (Hz) 121.74 85.82 87.00

Second-order natural frequency (Hz) 127.29 87.04 87.01

Third-order natural frequency (Hz) 130.07 87.05 87.66

Fourth-order natural frequency (Hz) 130.43 88.20 88.90

Total weight of upper-frame (kg) 3558 1977 1726 2565 2539

Weight reduction (kg) 1019

Proportion reduction (%) 28.64

Z. Ye et al. / Journal of Materials Processing Technology 105 (2000) 152±160 159



References

[1] J.S. Chung, S.M. Hwang, Application of a genetic algorithm to the

optimal design of the die shape in extrusion, J. Mater. Process.

Technol. 72 (1) (1997) 69±77.

[2] F.Y. Cheng, D. Li, Multiobjective optimization design with Pareto

genetic algorithm, J. Struct. Eng. 123 (9) (1997) 1252±1261.

[3] C. McCulley, C.L. Bloebaum, Genetic tool for optimal design

sequencing in complex engineering systems, Struct. Opt. 12 (2±3)

(1996) 186±201.

[4] C.-Y. Lin, P. Hajela, Design optimization with advanced genetic

search strategies, Adv. Eng. Software 21 (3) (1994) 179±189.

160 Z. Ye et al. / Journal of Materials Processing Technology 105 (2000) 152±160


